【導讀】在優(yōu)化數據采集(DAQ)系統時(shí),設計人員必須仔細考慮電源對高精度性能的影響。電源電路中通常都包含低壓差線(xiàn)性穩壓器和DC-DC開(kāi)關(guān)模式轉換器的組合。開(kāi)關(guān)模式轉換器的一個(gè)缺點(diǎn)是:它們會(huì )產(chǎn)生輸出紋波。雖然紋波幅度相對較低,但它們會(huì )耦合到模擬信號路徑的關(guān)鍵元件中,可能會(huì )破壞測量和降低性能。電源元件通常必須具備極低的噪聲,并且在PCB的多個(gè)位置進(jìn)行充分的電源去耦,以防止信號鏈的性能下降。
電源電壓抑制比(PSRR)是衡量系統抑制電源噪聲和干擾能力的量化指標。隨著(zhù)DAQ解決方案通過(guò)系統級封裝(SiP)技術(shù)發(fā)展成為更完整的信號鏈解決方案,可將電源去耦和精密信號鏈封裝在一起,以提高整個(gè)系統的PSRR。
PSRR定義
電源電壓抑制比也稱(chēng)為電源紋波抑制,實(shí)質(zhì)上是電源電壓變化與輸出電壓的比值,用dB表示。
以下公式定義了如何計算PSRR (A2V為電壓增益)。
PSRR是一個(gè)重要的參數,用于量化電路對電源噪聲和擾動(dòng)的敏感度及其對電路輸出的影響。通常在較寬的頻率范圍(直流到數MHz)內測量,PSRR會(huì )隨頻率升高而降低。
系統設計人員經(jīng)常在電路的電源節點(diǎn)中添加解耦電容,以減少可能耦合到敏感元件中的噪音和毛刺。對于放大器,將0.1 µF陶瓷電容放置在盡量靠近電源引腳的位置,以減少高頻耦合。此外,為了提供低頻解耦,可并聯(lián)連接較大的10 μF鉭電容,一般將其放置在更靠近電源的位置。
PSRR推動(dòng)因素
一些系統設計人員不愿使用高功耗、低噪聲功率轉換元件,其中一個(gè)原因是他們希望獲得高功效比。電池供電的DAQ系統就是這種要求以低功耗獲取高性能的應用,因此需要設計對電源噪聲不敏感的DAQ系統。
現代設備通常包含多個(gè)由同一電池供電的系統。在一定條件下,如果一個(gè)系統或設備的功耗增加,那么電池電壓,以及由該電池供電的其他設備的電源電壓都可能發(fā)生變化。由于這些原因,在設計系統的電池管理電路時(shí),dc PSRR參數非常重要。設計人員可以根據系統的靈敏度,使用LDO穩壓器來(lái)幫助消除壓降。在電池供電系統中,如果需要紋波觸發(fā)降壓、升壓或反相穩壓器,則AC PSRR也是一個(gè)重要參數。
對于工業(yè)應用,系統噪聲是關(guān)鍵指標。例如,附近設備的電磁干擾(EMI)會(huì )與電源耦合,導致出現噪聲雜散和其他誤差。為了幫助最大限度減少這些噪聲雜散,使用解耦電容和合適的PCB設計技術(shù)(例如接地、屏蔽,以及正確放置元件)非常重要。
圖1展示典型的精密數據采集系統信號鏈。各個(gè)元件都不同程度地受電源噪聲的影響。添加合適的解耦電容,可以提高圖1所示的信號鏈各元件在更高頻率下的PSRR性能。
圖1.典型的精密數據采集信號鏈。
ADI公司的信號鏈µModule®數據采集解決方案可以幫助解決一些電源設計難題,例如優(yōu)化線(xiàn)路布局、添加解耦電容,以及在某些情況下,添加電源管理元件,例如LDO穩壓器。ADAQ4003是一款µModule數據采集解決方案,所有電源都包含解耦電容,以降低其對擾動(dòng)的敏感度。 ADAQ7980/ADAQ7988µModule數據采集系統包括解耦電容和一個(gè)LDO穩壓器。 集成式LDO穩壓器可以進(jìn)一步簡(jiǎn)化設計——系統設計人員只需提供一個(gè)干凈電源為µModule器件供電,如果需要,還可以旁路LDO穩壓器。
當前測試分立元件PSRR的方法
分立元件PSRR測試是特性表征計劃中的常見(jiàn)組成部分,它采用一套完善的標準和方法進(jìn)行。分立元件PSRR測試通常在沒(méi)有任何外部電源去耦電容的情況下進(jìn)行,以揭示供電軌上的大量噪聲對性能的直接影響。
通常,可以使用函數發(fā)生器和示波器,或者使用網(wǎng)絡(luò )分析儀,通過(guò)向直流電源電壓注入不同的頻率,并測量DUT輸出的擾動(dòng)量來(lái)確定放大器的PSRR特性。
圖2.分立式PSRR測試電路示例。
對分立器件執行ac PSRR測試需要將交流信號注入直流電源電壓,并測量相對于電源激勵的輸出干擾。例如,在100 kHz頻率下,ADA4945的PSRR為115 dB。這意味著(zhù)電源上1 VPEAK, 100 kHz的交流干擾表現為器件輸出端約1.79 µVPEAK的電壓信號。
圖3.ADA4945全差分ADC驅動(dòng)器的PSRR與頻率的關(guān)系。
測試ADC的PSRR性能與測試放大器類(lèi)似,但它不是測試電壓輸出,而是數字碼輸出。對于ac PSRR,ADC的PSRR是該頻率下ADC輸出功率與該頻率下施加于A(yíng)DC VDD電源的200 mV p-p正弦波功率的比值。圖4和圖5分別顯示SAR ADC的測試配置和得到的典型響應。
對于dc PSRR測試,誤差是由于電源電壓偏離標稱(chēng)值而引起的滿(mǎn)量程轉換點(diǎn)的最大變化。
圖4.單端ADC ac PSRR測試電路。
圖5.ADC ac PSRR響應。
測試SiP以確定PSRR的挑戰在于:它們包含多個(gè)高達30 µF的內部旁路電容,且大部分信號發(fā)生器和網(wǎng)絡(luò )分析儀需要竭力在更高頻率下驅動(dòng)如此大的電容負載。
如何確定信號鏈µModule解決方案的PSRR特性
確定信號鏈µModule解決方案的PSRR特性時(shí),使用的測試方法基本上與測試放大器時(shí)使用的方法相同。在直流電源電壓上疊加一個(gè)交流信號,然后測量電源激勵和µModule輸出之間的關(guān)系。但是,受內部電源解耦電容影響,在電源的輸入頻率增加時(shí),也需要信號源提供更高的電流驅動(dòng)能力。內部電容確實(shí)可以提高對ac PSRR的抗干擾能力,但該測試旨在考慮最糟糕的情況。
信號鏈µModule解決方案可用于各種應用,所以在最終應用中,必須和測試分立元件一樣測試SiP的PSRR。雖然包含多個(gè)分立元件,但很難預測整個(gè)系統會(huì )如何響應交流電源激勵。
從特性表征角度來(lái)看,要正確測試PSRR,首要考慮因素包括內部旁路電容和合適的評估板設計(本文的“評估板開(kāi)發(fā)設計考量”一節會(huì )進(jìn)一步介紹評估板設計)。任何內部旁路電容都會(huì )提高信號鏈µModule解決方案的ac PSRR,但這種電容也會(huì )影響執行測試的方式。
如前所述,信號發(fā)生器不具備驅動(dòng)較大電容負載的能力。例如,如果信號鏈µModule解決方案的主電源上總共有3 µF內部旁路電容,并且PSRR測試需要最高10 MHz頻率和50 mV p-p振幅。根據這些條件,生成正弦波的信號發(fā)生器需要能夠驅動(dòng)約4.71 A電流,并且具有足夠帶寬來(lái)處理10 MHz信號。這是基于解耦電容在10 MHz時(shí)的電阻得出。
要提供足夠電流,可以使用高功率放大器(例如ADA4870)來(lái)提供額外的源電流能力。此設置假設使用的函數發(fā)生器可以提供偏置DUT所需的直流電壓。如果不是這種情況,可以使用偏置器來(lái)隔離直流和交流信號路徑,或者可以從給定的信號發(fā)生器獲取可用的直流偏置,以滿(mǎn)足其他所需的輸出要求。
圖6.使用ADA4870的PSRR設置框圖。
ADA4870評估板具備SMA輸入和SMA輸出,因此能夠提供一種相對簡(jiǎn)單的方法來(lái)連接評估板和信號發(fā)生器。
評估板開(kāi)發(fā)設計考量
設計也可用于實(shí)施PSRR測試的評估板并不等于要大幅變更設計。牢記以下幾點(diǎn):
● 對于要實(shí)施PSRR測試的每個(gè)電源,需提供一個(gè)通過(guò)SMA驅動(dòng)的選項,以保持信號源信號的完整性。
● 注意減少從SMA輸入到DUT上相關(guān)電源層這一路徑中的任何寄生電感和電容。任何寄生電容或電感都可能在相關(guān)頻率產(chǎn)生干擾諧振。
● 對于每個(gè)電源,確保其相關(guān)電源層是整體,也就是說(shuō),不會(huì )被無(wú)源元件和多個(gè)層分成多個(gè)部分。例如,一個(gè)電流檢測電阻不應橫跨兩個(gè)電源層(如圖7所示)。此外,盡量減少電源跨層的次數,避免通孔產(chǎn)生寄生電感,如圖8中的高頻模型所示。圖7所示的電阻可用于電流檢測,但在這種情況下,它們?yōu)? Ω。圖9顯示更好的PCB電源層布線(xiàn),圖10則顯示高頻等效模型。
圖7.不良的電源層連接設計示例。/figcaption>
圖8.圖7的高頻等效原理圖。
圖9.優(yōu)化PCB電源層布線(xiàn):更優(yōu)性能。
圖10.圖9的高頻等效原理圖。
必須在沒(méi)有DUT的情況下測試評估板,以確保相關(guān)頻率范圍內沒(méi)有任何干擾諧振。如果存在諧振,應在數據處理期間加以解決。對于每個(gè)頻率,都要通過(guò)示波器驗證電源信號是否符合預期,不要相信信號發(fā)生器上的撥盤(pán)。
測試設置
如前所述,受測信號鏈µModule解決方案的電源必須能夠提供額定直流偏置,以便在最大輸入頻率下為DUT供電,為交流激勵提供足夠電流。要在圖中所示的設置中實(shí)現這一目標,需結合使用ADA4870評估板(同相增益為2)和AD3256函數發(fā)生器。
圖11顯示自定義的ADA4870功率放大器評估板和ADA4355評估板。
圖11.用于執行PSRR測試的ADA4355評估板和ADA4870評估板。
圖12中所示的數據是通過(guò)捕捉每個(gè)輸入頻率下的數據并查看每個(gè)頻率下FFT (dBFS)的功率而生成的??梢允褂霉?求解該頻率下的電壓電平:
利用得出的 VOUT_PSRR來(lái)計算PSRR:
圖12.ADA4355 PSRR測試結果。
結論
ADI公司的信號鏈µModule解決方案集成了信號調理、電源產(chǎn)生和無(wú)源內部元件。這些一體化系統級封裝設計有助于客戶(hù)在極小的PCB尺寸空間內快速實(shí)現符合市場(chǎng)需求的預期性能。雖然信號鏈µModule解決方案簡(jiǎn)單易用,但必須進(jìn)行適當的測試。盡管可以采用PSRR標準測試方法,但由于標準設備本身的限制,通常需要額外的電流驅動(dòng)能力。
參考電路
“運算放大器電源電壓抑制比(PSRR)與電源電壓。”(ADI公司,2009年)
Reeder, Rob。“高速ADC的電源設計,” ADI公司,2012年2月。
Morita, Glenn。 “理解低壓差穩壓器(LDO)概念,實(shí)現系統優(yōu)化設計。” 模擬對話(huà),第48卷第12期,2014年12月。
Walsh, Alan。“在功率敏感型應用中利用高效率、超低功耗開(kāi)關(guān)穩壓器為精密SAR ADC供電。” ADI公司,2016年3月。
推薦閱讀: