你的位置:首頁(yè) > 互連技術(shù) > 正文

談?wù)凷iC MOSFET的短路能力

發(fā)布時(shí)間:2024-02-01 責任編輯:lina

【導讀】在電力電子的很多應用,如電機驅動(dòng),有時(shí)會(huì )出現短路的工況。這就要求功率器件有一定的扛短路能力,即在一定的時(shí)間內承受住短路電流而不損壞。目前市面上大部分IGBT都會(huì )在數據手冊中標出短路能力,大部分在5~10us之間,例如英飛凌IGBT3/4的短路時(shí)間是10us,IGBT7短路時(shí)間是8us。而 大 部 分 的 SiC MOSFET 都 沒(méi) 有 標 出 短 路 能 力 , 即 使 有 , 也 比 較 短 , 例 如 英 飛 凌 的CoolSiCTM MOSFET單管封裝器件標稱(chēng)短路時(shí)間是3us,EASY封裝器件標稱(chēng)短路時(shí)間是2us。


在電力電子的很多應用,如電機驅動(dòng),有時(shí)會(huì )出現短路的工況。這就要求功率器件有一定的扛短路能力,即在一定的時(shí)間內承受住短路電流而不損壞。


目前市面上大部分IGBT都會(huì )在數據手冊中標出短路能力,大部分在5~10us之間,例如英飛凌IGBT3/4的短路時(shí)間是10us,IGBT7短路時(shí)間是8us。


而 大 部 分 的 SiC MOSFET 都 沒(méi) 有 標 出 短 路 能 力 , 即 使 有 , 也 比 較 短 , 例 如 英 飛 凌 的CoolSiCTM MOSFET單管封裝器件標稱(chēng)短路時(shí)間是3us,EASY封裝器件標稱(chēng)短路時(shí)間是2us。


為什么IGBT和SiC MOSFET短路能力差這么多,這是SiC天生的缺陷嗎?今天我們簡(jiǎn)單分析一下。


先以IGBT為例,看一下短路時(shí),功率器件內部發(fā)生了什么?


功率器件正常工作時(shí)處于飽和區,CE電壓很低,此時(shí)器件電流隨CE電壓提高而上升。隨著(zhù)CE電壓進(jìn)一步提升,反型層溝道被夾斷,器件電流相對保持穩定,不再隨CE電壓上升而上升,我們稱(chēng)之為退出飽和區。在IGBT的輸出特性曲線(xiàn)上,我們能看到明顯的退飽和現象。


(關(guān)于IGBT退飽和特性更詳細分析可參考如何理解IGBT的退飽和現象以及安全工作區)


談?wù)凷iC MOSFET的短路能力
(a) IGBT工作在飽和區

談?wù)凷iC MOSFET的短路能力
(b) IGBT退出飽和區,溝道夾斷


談?wù)凷iC MOSFET的短路能力

IGBT輸出特性曲線(xiàn)


有的SiC MOSFET沒(méi)有短路能力,是因為它沒(méi)有退飽和特性嗎?非也,SiC MOSFET也有退飽和特性,只不過(guò)對于MOSFET,工作區的命名方式和IGBT正好相反,正常工作的狀態(tài)為線(xiàn)性區。當DS之間電壓上升到一定程度后,溝道夾斷,電流隨DS電壓上升的趨勢變小,這時(shí)MOSFET進(jìn)入了飽和區。只不過(guò)從輸出特性上看,對于SiC MOSFET,進(jìn)入飽和的拐點(diǎn)不太明顯。SiC MOSFET進(jìn)入飽和區的拐點(diǎn)不太明顯,和DIBL(漏致勢壘降低效應)有關(guān),有興趣了解的讀者請戳這篇文章SiC MOSFET的短溝道效應


談?wù)凷iC MOSFET的短路能力


我們以下圖為例,來(lái)說(shuō)明SiC MOSFET的一類(lèi)短路過(guò)程。這是兩個(gè)45mΩ 1200V CoolSiC?MOSFET的短路波形:一個(gè)是4腳的TO-247封裝,另一個(gè)是3腳TO-247封裝。圖中顯示了兩者在VDS=800V的直流電壓下的情況。


談?wù)凷iC MOSFET的短路能力


短路剛開(kāi)始發(fā)生時(shí),漏極電流迅速上升,很快到達一個(gè)峰值。由于開(kāi)爾文源設計中的反饋回路減少,4腳TO-247封裝的MOSFET的電流上升得更快,在短路事件開(kāi)始時(shí),它也顯示出較少的自熱,峰值電流很高,超過(guò)300A。相反,3腳TO-247封裝的器件顯示出較小的峰值電流。造成這種情況的主要原因是di/dt作用于3腳元件的功率回路中的雜散電感,產(chǎn)生的瞬時(shí)電壓對VGS產(chǎn)生負反饋,從而降低了開(kāi)關(guān)速度。隨后,短路電流引起SiC MOSFET芯片結溫上升,溝道遷移率μn隨之降低,同時(shí)疊加JFET效應,使得短路電流自峰值后開(kāi)始下降,漏極電流下降到大約150A,直至關(guān)斷。測試波形證明了兩種封裝的TO-247 CoolSiC? MOSFET的典型3μs短路能力。對于功率模塊,根據相關(guān)的目標應用要求,目前的短路能力最高為2μs。我們的CoolSiC? MOSFET是第一個(gè)在數據表中保證短路耐受時(shí)間的器件。


TO247 3pin 封裝的IMW120R030M1H中,關(guān)于短路時(shí)間的定義:


EASY封裝的FF33MR12W1M1H中,關(guān)于短路時(shí)間的定義:


談?wù)凷iC MOSFET的短路能力


大部分IGBT短路時(shí)間在5~10μs,SiC MOSFET器件短路時(shí)間相對比較低,主要原因有以下幾點(diǎn):


談?wù)凷iC MOSFET的短路能力


1.通過(guò)以上分析,我們可以看到,當功率器件處于短路狀態(tài)時(shí),短路電流相對恒定。對于IGBT來(lái)說(shuō),短路電流一般是額定電流的4~6倍,而SiC MOSFET的短路電流一般可達額定電流的10倍。這一點(diǎn)從二者的輸出特性曲線(xiàn)就可以看出來(lái)。

2.當功率器件短路時(shí),器件承受母線(xiàn)電壓,電場(chǎng)分布在整個(gè)漂移區。因為SiC材料的臨界電場(chǎng)強度約是Si材料的10倍,因此,要達到同樣的耐壓等級,SiC MOSFETI漂移區僅需要SiIGBT的十分之一。這意味著(zhù)SiC MOSFET短路時(shí)發(fā)熱熱量更集中,溫度也更高。


3.SiC MOSFET芯片面積小于同電流等級的IGBT,電流密度更高,熱量更集中。


綜上所述,SiC MOSFET面積小、短路電流高、漂移層薄等特性,導致其短路時(shí)發(fā)熱量集中,相對IGBT來(lái)說(shuō),短路時(shí)間就相對短一些。


是不是SiC MOSFET短路能力就一定不如IGBT呢?也并不是這樣。功率器件的短路能力都是設計出來(lái)的,短路能力需要和其他性能做折衷。比如增加器件溝道密度,MOSFET的導通電阻會(huì )下降,但相應的,電流密度更高,短路電流會(huì )更大,因此短路時(shí)間下降。


除了導通電阻,SiC MOSFET短路能力設計還要考慮耐壓、損耗、壽命等多種因素??梢栽O計一個(gè)損耗極低但沒(méi)有短路能力的器件,也可以稍微犧牲一點(diǎn)性能,使器件具備短路能力,從而提升整體系統的可靠性。選擇哪一個(gè)方向,使器件最終呈現什么樣的性能,都是針對目標應用權衡的結果。

本文轉載自:infineon


免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問(wèn)題,請聯(lián)系小編進(jìn)行處理。


推薦閱讀:

旁路電容和耦合電容:以正確的方式穩定電壓

實(shí)用技巧分享:為特定的模擬開(kāi)關(guān)構建宏模型

模電的半壁江山——運算放大器的原理和應用

如何在A(yíng)DI DSP中設計一個(gè)合理的混響?

用于開(kāi)關(guān)模式電源的數字電源

特別推薦
技術(shù)文章更多>>
技術(shù)白皮書(shū)下載更多>>
熱門(mén)搜索
?

關(guān)閉

?

關(guān)閉

久久无码人妻精品一区二区三区_精品少妇人妻av无码中文字幕_98精品国产高清在线看入口_92精品国产自产在线观看481页