【導讀】各個(gè)電路都有其設計特色,希望我們能從其電路的巧妙設計中,吸取有用的.例如單電源全波電路的設計,復合反饋電路的設計,都是很有用的設計思想和方法,如果能把各個(gè)圖的電路原理分析并且推導每個(gè)公式,會(huì )有受益的。
圖中精密全波整流電路的名稱(chēng)皆為作者自己的命名,只是為了區分;除非特殊說(shuō)明,增益均按1設計.

圖1是最經(jīng)典的電路,優(yōu)點(diǎn)是可以在電阻R5上并聯(lián)濾波電容.電阻匹配關(guān)系為R1=R2,R4=R5=2R3;可以通過(guò)更改R5來(lái)調節增益。

圖2優(yōu)點(diǎn)是匹配電阻少,只要求R1=R2

圖3的優(yōu)點(diǎn)是輸入高阻抗,匹配電阻要求R1=R2,R4=2R3

圖4的匹配電阻全部相等,還可以通過(guò)改變電阻R1來(lái)改變增益.缺點(diǎn)是在輸入信號的負半周,A1的負反饋由兩路構成,其中一路是R5,另一路是由運放A2復合構成,也有復合運放的缺點(diǎn)。


圖5 和 圖6 要求R1=2R2=2R3,增益為1/2,缺點(diǎn)是:當輸入信號正半周時(shí),輸出阻抗比較高,可以在輸出增加增益為2的同相放大器隔離.另外一個(gè)缺點(diǎn)是正半周和負半周的輸入阻抗不相等,要求輸入信號的內阻忽略不計。

圖7正半周,D2通,增益=1+(R2+R3)/R1;負半周增益=-R3/R2;要求正負半周增益的絕對值相等,例如增益取2,可以選R1=30K,R2=10K,R3=20K

圖8的電阻匹配關(guān)系為R1=R2

圖9要求R1=R2,R4可以用來(lái)調節增益,增益等于1+R4/R2;如果R4=0,增益等于1;缺點(diǎn)是正負半波的輸入阻抗不相等,要求輸入信號的內阻要小,否則輸出波形不對稱(chēng)。

圖10是利用單電源運放的跟隨器的特性設計的,單電源的跟隨器,當輸入信號大于0時(shí),輸出為跟隨器;當輸入信號小于0的時(shí)候,輸出為0.使用時(shí)要小心單電源運放在信號很小時(shí)的非線(xiàn)性.而且,單電源跟隨器在負信號輸入時(shí)也有非線(xiàn)性。
圖7,8,9三種電路,當運放A1輸出為正時(shí),A1的負反饋是通過(guò)二極管D2和運放A2構成的復合放大器構成的,由于兩個(gè)運放的復合(乘積)作用,可能環(huán)路的增益太高,容易產(chǎn)生振蕩。
精密全波電路還有一些沒(méi)有錄入,比如高阻抗型還有一種把A2的同相輸入端接到A1的反相輸入端的,其實(shí)和這個(gè)高阻抗型的原理一樣,就沒(méi)有專(zhuān)門(mén)收錄,其它采用A1的輸出只接一個(gè)二極管的也沒(méi)有收錄,因為在這個(gè)二極管截止時(shí),A1處于開(kāi)環(huán)狀態(tài)。
結論
雖然這里的精密全波電路達十種,仔細分析,發(fā)現優(yōu)秀的并不多,確切的說(shuō)只有3種,就是前面的3種。
圖1的經(jīng)典電路雖然匹配電阻多,但是完全可以用6個(gè)等值電阻R實(shí)現,其中電阻R3可以用兩個(gè)R并聯(lián).可以通過(guò)R5調節增益,增益可以大于1,也可以小于1.最具有優(yōu)勢的是可以在R5上并電容濾波。
圖2的電路的優(yōu)勢是匹配電阻少,只要一對匹配電阻就可以了。
圖3的優(yōu)勢在于高輸入阻抗。
其它幾種,有的在D2導通的半周內,通過(guò)A2的復合實(shí)現A1的負反饋,對有些運放會(huì )出現自激. 有的兩個(gè)半波的輸入阻抗不相等,對信號源要求較高。
兩個(gè)單運放型雖然可以實(shí)現整流的目的,但是輸入輸出特性都很差.需要輸入輸出都加跟隨器或同相放大器隔離。
各個(gè)電路都有其設計特色,希望我們能從其電路的巧妙設計中,吸取有用的.例如單電源全波電路的設計,復合反饋電路的設計,都是很有用的設計思想和方法,如果能把各個(gè)圖的電路原理分析并且推導每個(gè)公式,會(huì )有受益的。