你的位置:首頁(yè) > 電源管理 > 正文

基于變壓器的穩壓器采用靈活的TLVR結構,實(shí)現極快的動(dòng)態(tài)響應

發(fā)布時(shí)間:2023-05-26 來(lái)源:ADI 責任編輯:wenwei

【導讀】對于需要數千安培大電流的應用來(lái)說(shuō),具有極快動(dòng)態(tài)響應的穩壓器(VR)是非常合宜的。本文介紹基于變壓器的穩壓器,其采用跨電感電壓調節器(TLVR)結構,設計用于在負載瞬變期間實(shí)現極快響應。采用TLVR結構的基于變壓器的穩壓器克服了傳統TLVR結構的缺點(diǎn),提供很大的設計靈活性和極快的瞬態(tài)響應,因而輸出電容和解決方案尺寸更小,系統成本更低。文中提供了詳細的實(shí)驗結果和案例研究,以展示采用TLVR結構的基于變壓器的穩壓器具備的綜合優(yōu)勢。


簡(jiǎn)介


如今,隨著(zhù)多相穩壓器用于為CPU、GPU、ASIC等各種微處理器供電,其重要性與日俱增。近年來(lái),這些微處理器的功率需求一直在急劇增加,特別是在電信和一些新興應用中,如加密貨幣挖礦和自動(dòng)駕駛系統。因此,微處理器需要更高擺率的更大電流。這就要求穩壓器在負載瞬變期間具有更快的動(dòng)態(tài)響應,以滿(mǎn)足輸出電壓紋波要求。從系統尺寸的角度來(lái)看,極快的動(dòng)態(tài)響應可減小所需的輸出電容并縮小輸出電容的尺寸,因而非常有吸引力。此外,更小且更少的輸出電容有利于降低系統成本。本文將介紹一種基于變壓器的穩壓器解決方案,它采用TLVR結構,旨在實(shí)現極快的負載瞬態(tài)響應,并大幅縮減輸出電容的尺寸和成本。在基于變壓器的穩壓器解決方案中引入TLVR結構后,TLVR結構的傳統挑戰可以很容易地解決。


本文將詳細說(shuō)明如何設計和實(shí)現,并通過(guò)基于實(shí)際應用的案例研究展示其綜合優(yōu)勢。還應注意的是,本文中的設計和實(shí)現細節目前正在申請專(zhuān)利。


TLVR結構能夠有效加速多相穩壓器負載瞬變期間的動(dòng)態(tài)響應1,2,3。如圖1所示,TLVR結構用TLVR電感取代了傳統多相穩壓器中的輸出電感。TLVR電感可以被視為一個(gè)1:1變壓器,它具有一個(gè)初級繞組和一個(gè)次級繞組。所有TLVR電感的耦合是通過(guò)連接所有TLVR電感的次級繞組來(lái)實(shí)現的。TLVR電感副邊的電流ILC由所有不同相位的控制信號決定。由于耦合效應,一旦穩壓器的一個(gè)相位的占空比改變以響應負載瞬變,那么所有相位的輸出電流可以同時(shí)斜坡上升或下降。這就是TLVR結構能夠實(shí)現出色負載瞬變性能的原因。


基于變壓器的穩壓器


基于變壓器的穩壓器一直是各種微處理器的有競爭力的電源解決方案?;谧儔浩鞯姆€壓器配備了降壓變壓器,具有很高且靈活的降壓比、簡(jiǎn)單緊湊的結構和高效率。與無(wú)變壓器的多相穩壓器相比,基于變壓器的穩壓器允許更高的輸入電壓,從而為簡(jiǎn)化穩壓器設計和實(shí)現更高效率開(kāi)辟了一個(gè)全新的世界。


圖2顯示了基于變壓器的穩壓器的一個(gè)代表性示例的電路圖。該穩壓器電路具有一個(gè)降壓變壓器,其副邊上有兩個(gè)次級繞組和一個(gè)電流倍增器結構??梢栽O計更多的次級繞組來(lái)實(shí)現更高的輸出電流和功率密度,并且副邊上不需要額外的控制信號。通過(guò)適當的控制電路和策略,圖2中的多個(gè)示例穩壓器電路可以很容易地并聯(lián)起來(lái),以便為各種高性能微處理器提供所需的電流。因此,本文通篇以圖2所示的穩壓器電路為例。


1682497696975386.png

圖1.(a)無(wú)TLVR結構的傳統多相穩壓器的電路圖,(b)采用TLVR結構的多相穩壓器的電路圖


1682497682866490.png

圖2.一個(gè)基于變壓器的穩壓器示例的電路圖


TLVR結構在基于變壓器的穩壓器中的優(yōu)勢


TLVR結構可以顯著(zhù)加速沒(méi)有任何降壓變壓器的穩壓器在負載瞬變期間的動(dòng)態(tài)響應,這點(diǎn)已經(jīng)得到了很好的證明。然而,這種出色的動(dòng)態(tài)性能伴隨著(zhù)許多挑戰1,2,3。在沒(méi)有任何降壓變壓器的情況下,無(wú)變壓器穩壓器通常以低占空比工作,TLVR電感的原邊和副邊均施加高電壓。TLVR電感副邊的高伏秒導致TLVR電感副邊存在高環(huán)流,并在穩態(tài)工作期間產(chǎn)生額外的功率損耗。因此,如圖1b所示,應添加電感LC以限制TLVR電感次級繞組中的環(huán)流1。額外的電感會(huì )進(jìn)一步增加系統損耗和成本。


在基于變壓器的穩壓器中引入TLVR結構后,TLVR結構帶來(lái)的挑戰可以順利化解。TLVR結構與降壓變壓器相結合時(shí),由于主變壓器的高降壓比,TLVR結構的缺點(diǎn)變得不那么明顯。同時(shí),耦合效應推動(dòng)所有相位的電流在負載瞬變期間同步響應,因此仍然可以實(shí)現極快的動(dòng)態(tài)響應。由于降壓變壓器,施加到TLVR電感的電壓變得更低,從而降低電感損耗。TLVR電感副邊所需的附加電感可以低得多。事實(shí)上,可以利用寄生電感來(lái)消除附加電感,這樣附加電感帶來(lái)的額外損耗和成本也就不存在。此外,與TLVR電感和附加電感相關(guān)的絕緣問(wèn)題也不再是問(wèn)題。


采用靈活TLVR結構的基于變壓器的穩壓器


在采用TLVR結構的基于變壓器的穩壓器中,電路中的所有輸出電感都被TLVR電感取代。此外,當在基于變壓器的穩壓器中應用TLVR結構時(shí),有兩類(lèi)方案可以實(shí)現,這為此結構的實(shí)施提供了很大的靈活性。圖3以圖2所示的兩個(gè)并聯(lián)穩壓器模塊為例,顯示了這兩類(lèi)實(shí)現的電路圖。圖3a中的實(shí)現稱(chēng)為串聯(lián)連接,因為T(mén)LVR電感的所有次級繞組都是串聯(lián)。圖3b所示的另一種實(shí)現稱(chēng)為串并聯(lián)連接。在模塊1中,L11和L12的次級繞組串聯(lián)連接,然后與串聯(lián)連接的L13和L14的次級繞組并聯(lián)。模塊1中TLVR電感次級繞組的這種連接最終與模塊2中的對應連接串聯(lián),如圖3b所示。類(lèi)似地,當兩個(gè)以上的基于變壓器的穩壓器模塊并聯(lián)連接時(shí),可以將圖3所示的TLVR結構實(shí)現兩次。


設計和實(shí)現上增強的靈活性并不會(huì )增加控制的復雜性。采用TLVR結構的基于變壓器的穩壓器的兩種實(shí)現采用相同的控制方案。這里以三個(gè)模塊并聯(lián)的基于變壓器的穩壓器為例來(lái)介紹控制方案。在不同穩壓器模塊的控制信號之間插入相移。模塊1和模塊2之間插入的相移為60°,模塊2和模塊3的控制信號之間插入60°的相移。如果有N個(gè)模塊并聯(lián),則兩個(gè)相鄰模塊之間插入的相移為180°/N。


基于所提出的控制方案,可以推導出施加到所有TLVR電感的電壓。圖4總結了兩個(gè)模塊并聯(lián)的基于變壓器的穩壓器中所有TLVR電感的電壓波形。由于圖3中的兩種實(shí)施方式具有相同的控制信號,因此電感電壓波形也相同。還可以觀(guān)察到,L11和L13具有相同的電壓波形,L12和L14也是如此。這些電感電壓波形有效地解釋了為什么圖3b中的串并聯(lián)連接是合法的。TLVR電感副邊的電流Isec具有高頻紋波,其頻率為主降壓變壓器原邊中的MOSFET開(kāi)關(guān)頻率的4倍。當N (N > 2)個(gè)模塊并聯(lián)時(shí),Isec的電流紋波將處于更高的頻率(2N×開(kāi)關(guān)頻率),并且Isec的幅度可能進(jìn)一步降低。因此,所提出的相移控制方案不僅能夠減小輸出電壓紋波,而且可以有效抑制Isec的紋波,從而降低TLVR電感副邊的傳導損耗。


此外,采用TLVR結構的基于變壓器的穩壓器中不需要額外的電感。與額外電感相關(guān)的額外成本和損耗也就不存在,因此系統的效率和成本大大受益。由于變壓器降壓比很高(n很?。?,因此與采用TLVR結構的無(wú)變壓器穩壓器相比,TLVR電感的電壓顯著(zhù)降低。所以,沒(méi)有必要在TLVR電感的副邊引入額外補償電感Lc來(lái)抑制電流紋波。有關(guān)TLVR電感電壓的詳細信息可參見(jiàn)圖4。在這種情況下,電路中的寄生電感和TLVR電感的漏感在TLVR電感副邊的電流(Isec)整形中起著(zhù)關(guān)鍵作用。為了進(jìn)一步提高負載瞬變期間的動(dòng)態(tài)性能,降低TLVR電感副邊的漏感和寄生電感很重要。


1682497665545232.png

1682497653711633.png

圖3.兩個(gè)并聯(lián)的采用TLVR結構的基于變壓器的穩壓器模塊的兩種實(shí)現:(a)串聯(lián)連接,(b)串并聯(lián)連接


1682497642520016.png

圖4.采用TLVR結構的基于變壓器的穩壓器模塊(兩個(gè)模塊并聯(lián))中TLVR電感的電壓和次級電流波形


原型和實(shí)驗結果


我們設計并構建了采用TLVR結構的基于變壓器的穩壓器模塊的兩種實(shí)現方案,包括串聯(lián)版本和串并聯(lián)版本。圖5a顯示了典型TLVR電感的3D模型。構建的模塊原型參見(jiàn)圖5b。兩個(gè)版本的尺寸與無(wú)TLVR結構的版本相同。換句話(huà)說(shuō),無(wú)論實(shí)施串聯(lián)連接還是串并聯(lián)連接,采用TLVR電感以實(shí)現TLVR結構都不會(huì )增加穩壓器模塊的尺寸。


使用所構建的原型成功展示了采用TLVR結構的基于變壓器的穩壓器的極快負載瞬變性能。實(shí)驗設置由兩個(gè)并聯(lián)運行的穩壓器模塊組成,如圖5b所示。TLVR電感的副邊沒(méi)有安裝額外電感。負載瞬變在20 A至170 A之間,擺率為125 A/μs。圖6所示的基線(xiàn)比較以串并聯(lián)版本為例,清楚地展示了采用TLVR結構的基于變壓器的穩壓器的出色負載瞬變響應。為了進(jìn)行公平比較,無(wú)TLVR結構的情況是通過(guò)斷開(kāi)TLVR電感副邊連接來(lái)實(shí)現的。當負載電流從20 A上升到170 A時(shí),采用TLVR結構的基于變壓器的穩壓器可以更快速地調節輸出電壓,峰峰值電壓紋波要低得多。


經(jīng)過(guò)進(jìn)一步改進(jìn),采用TLVR結構的基于變壓器的穩壓器可實(shí)現極快的負載瞬變響應。詳細的瞬變波形如圖7所示。在從20 A到170 A的相同瞬變下,得益于TLVR結構帶來(lái)的極快響應,峰峰值輸出電壓紋波僅為23.7 mV。采用TLVR結構大大加快了動(dòng)態(tài)響應,峰峰值輸出電壓紋波因此降低62%。測得的115 kHz的高控制帶寬也證明了TLVR結構能夠實(shí)現極快的負載瞬變響應。詳細比較總結在表1中。

 

15.jpg

圖5.(a) TLVR電感的3D模型,(b)采用TLVR結構的兩個(gè)基于變壓器的穩壓器原型在演示板上并聯(lián)

 

表1.采用TLVR結構和無(wú)TLVR結構的基于變壓器的穩壓器的動(dòng)態(tài)響應比較

16.png


1682497593836778.png

圖6.采用TLVR結構和無(wú)TLVR結構的基于變壓器的穩壓器的負載瞬變響應比較


1682497579227701.png圖7.采用TLVR結構的基于變壓器的穩壓器的極快負載瞬變響應


案例研究


為了進(jìn)一步展示將基于變壓器的穩壓器與TLVR結構相結合的優(yōu)勢,本節介紹一個(gè)基于變壓器的穩壓器的案例研究,其規格要求來(lái)自實(shí)際應用。采用和不采用TLVR結構的兩種基于變壓器的穩壓器解決方案都進(jìn)行了實(shí)現和測試,以提供0.825 V/540 A供電軌。規格和測試結果的詳情總結在表2中。在相位裕量和增益裕量相當的情況下,采用TLVR結構的基于變壓器的穩壓器解決方案實(shí)現了比不采用TLVR結構的穩壓器解決方案高61%的控制帶寬。因此,這再次證明了TLVR結構支持極快的瞬變,如圖8所示。峰峰值輸出電壓紋波僅為40.92 mV,比0.825 V輸出電壓的5%還低。


與不采用TLVR結構的穩壓器解決方案相比,采用TLVR結構的穩壓器解決方案節省了39%的輸出電容,但仍實(shí)現了低得多的峰峰值電壓紋波。因此,輸出電容數量減少27%,導致系統解決方案尺寸大大減小。此外,由于TLVR結構支持極快的瞬變響應,輸出電容的成本可以減少43%。


一般來(lái)說(shuō),采用TLVR結構的基于變壓器的穩壓器具有極快的動(dòng)態(tài)響應,可以有效減小輸出電容,同時(shí)在快速負載瞬變期間仍能保持低輸出電壓紋波。另外,采用TLVR結構的基于變壓器的穩壓器中不需要額外的電感。因此,采用TLVR結構的基于變壓器的穩壓器解決方案不僅可以顯著(zhù)減小解決方案總體尺寸,還能大幅降低解決方案成本,尤其是輸出電容成本。兩種可用實(shí)現方案進(jìn)一步帶來(lái)了很大的靈活性,同時(shí)控制復雜性并未增加。


1682497561841935.png

圖8.采用TLVR結構的基于變壓器的穩壓器在150 A至350 A負載瞬變下的極快負載瞬變響應(三個(gè)穩壓器模塊并聯(lián))


表2.基于變壓器的穩壓器解決方案案例研究,規格來(lái)自客戶(hù)

1682497549950389.png


結語(yǔ)


在廣泛的應用中,微處理器消耗更高擺率的更大電流,因此微處理器的穩壓器解決方案需要具有更快的動(dòng)態(tài)響應。本文介紹了采用TLVR結構的基于變壓器的穩壓器,它能在微處理器的負載瞬變期間實(shí)現極快的動(dòng)態(tài)響應。通過(guò)將基于變壓器的穩壓器與TLVR結構相結合,由于主變壓器的降壓比很大,TLVR結構的傳統挑戰可以很容易地解決。TLVR電感的過(guò)大損耗可以顯著(zhù)降低,并且不需要額外的補償電感,因而損耗和成本更低。此外,當在基于變壓器的穩壓器中實(shí)現TLVR結構時(shí),有兩類(lèi)方案可以采用,這為設計和實(shí)現提供了很大的靈活性。這兩種實(shí)現方案可以使用相同的控制方案來(lái)控制許多并聯(lián)的穩壓器模塊。實(shí)驗結果證明,與無(wú)TLVR結構的穩壓器相比,這兩種實(shí)現方案都能實(shí)現極快的負載瞬變響應,控制帶寬高2.56倍,峰峰值電壓紋波低62%。一個(gè)詳細的案例研究進(jìn)一步展示了采用TLVR結構的基于變壓器的穩壓器在解決方案尺寸和成本方面的綜合優(yōu)勢。


參考電路


1 “快速多相跨電感電壓調節器” 。Technical Disclosure Commons,2019年5月。

2 Ming Xu、Yucheng Ying、Qiang Li和Fred C. Lee。 “新型耦合電感多相穩壓器” 。IEEE APEC,2007年2月。

3 Shreyankh Krishnamurthy、David Wiest和Yosef Zhou。 “跨電感電壓調節器(TLVR):電路運行、功率磁結構、效率和成本的權衡” 。PCIM Europe,2022年5月。



免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問(wèn)題,請聯(lián)系小編進(jìn)行處理。


推薦閱讀:


12V不夠用了,數據中心48V電源架構正在走向臺前!

高保真模擬開(kāi)關(guān),敲開(kāi)美妙音頻的大門(mén)

EM-500儲能網(wǎng)關(guān)的AI采集性能實(shí)測

用于DC-DC轉換器的MIL-SPEC COTS EMC輸入濾波器

【CMOS邏輯IC基礎知識】—解密組合邏輯背后的強大用途?。ㄉ希?/a>

特別推薦
技術(shù)文章更多>>
技術(shù)白皮書(shū)下載更多>>
熱門(mén)搜索
?

關(guān)閉

?

關(guān)閉

久久无码人妻精品一区二区三区_精品少妇人妻av无码中文字幕_98精品国产高清在线看入口_92精品国产自产在线观看481页