你的位置:首頁(yè) > RF/微波 > 正文

5G毫米波終端技術(shù)及測試方案分析

發(fā)布時(shí)間:2019-07-19 責任編輯:xueqi

【導讀】作為5G關(guān)鍵技術(shù)之一的毫米波技術(shù)已成為目前標準組織及產(chǎn)業(yè)鏈各方研究和討論的重點(diǎn),毫米波將會(huì )給未來(lái)5G終端的實(shí)現帶來(lái)諸多的技術(shù)挑戰,同時(shí)毫米波終端的測試方案也將不同于目前的終端。本文將對毫米波頻譜劃分近況,毫米波終端技術(shù)實(shí)現挑戰及測試方案進(jìn)行介紹及分析。
 
1、引言
 
隨著(zhù)移動(dòng)通信的迅猛發(fā)展,低頻段頻譜資源的開(kāi)發(fā)已經(jīng)非常成熟,剩余的低頻段頻譜資源已經(jīng)不能滿(mǎn)足5G時(shí)代10Gbps的峰值速率需求,因此未來(lái)5G系統需要在毫米波頻段上尋找可用的頻譜資源。作為5G關(guān)鍵技術(shù)之一的毫米波技術(shù)已成為目前標準組織及產(chǎn)業(yè)鏈各方研究和討論的重點(diǎn),毫米波將會(huì )給未來(lái)5G終端的實(shí)現帶來(lái)諸多的技術(shù)挑戰,同時(shí)毫米波終端的測試方案也將不同于目前的終端。本文將對毫米波頻譜劃分近況,毫米波終端技術(shù)實(shí)現挑戰及測試方案進(jìn)行介紹及分析。
 
2、毫米波頻譜劃分
 
2015年,ITU-R WP5D發(fā)布了IMT.ABOVE 6GHz的研究報告,詳細研究了不同頻段無(wú)線(xiàn)電波的衰減特性。在同年的世界無(wú)線(xiàn)電通信大會(huì )(WRC-15)上提出了多個(gè)5G候選的毫米波頻段,最終5G毫米波頻譜的確定將在WRC-19上的完成。經(jīng)過(guò)多年的研究和討論,各國各地區對毫米波頻譜資源的劃分都有所進(jìn)展,以下將著(zhù)重介紹中國、美國及歐洲在毫米波頻段劃分上的近況。
 
中國:2017年6月,工信部面向社會(huì )廣泛征集24.75-27.5 GHz、37-42.5 GHz或其他毫米波頻段用于5G系統的意見(jiàn),并將毫米波頻段納入5G試驗的范圍,意在推動(dòng)5G毫米波的研究及毫米波產(chǎn)品的研發(fā)試驗。
 
美國:早在2014年,FCC(美國聯(lián)邦通訊委員會(huì ))就開(kāi)啟了5G毫米波頻段的分配工作,2016年7月,確定將27.5-28.35 GHz、37-38.6 GHz、38.6-40 GHz作為授權頻譜分配給5G,另外還為5G分配了64-71 GHz作為未授權頻譜。
 
歐洲:2016年11月,RSPG(歐盟委員會(huì )無(wú)線(xiàn)頻譜政策組)發(fā)布了歐盟5G頻譜戰略,確定將24.25-27.5 GHz作為歐洲5G 的先行頻段,31.8-33.4 GHz 、40.5-43.5 GHz作為5G潛在頻段。
 
3、毫米波終端技術(shù)實(shí)現
 
毫米波頻段頻率高、帶寬大等特點(diǎn)將對未來(lái)5G終端的實(shí)現帶來(lái)諸多挑戰,毫米波對終端的影響主要在于天線(xiàn)及射頻前端器件。
 
3.1 終端側大規模天線(xiàn)陣列
 
由于天線(xiàn)尺寸的限制,在低頻段大規模天線(xiàn)陣列只能在基站側使用。但隨著(zhù)頻率的上升,在毫米波段,單個(gè)天線(xiàn)的尺寸可縮短至毫米級別,在終端側布置更多的天線(xiàn)成為可能。如下圖1所示,目前大多數LTE終端只部署了兩根天線(xiàn),但未來(lái)5G毫米波終端的天線(xiàn)數可達到16根甚至更多,所有的天線(xiàn)將集成為一個(gè)毫米波天線(xiàn)模塊。由于毫米波的自由空間路損更大,氣衰、雨衰等特性都不如低頻段,毫米波的覆蓋將受到嚴重的影響。終端側使用大規模天線(xiàn)陣列可獲得更多的分集增益,提高毫米波終端的接收和發(fā)射性能,能夠在一定程度彌補毫米波覆蓋不足的缺點(diǎn),終端側大規模天線(xiàn)陣列將會(huì )是毫米波得以商用的關(guān)鍵因素之一。
 
圖1:LTE終端與毫米波終端天線(xiàn)設想
 
終端部署更多的天線(xiàn)意味著(zhù)終端設計難度的上升,與基站側部署大規模天線(xiàn)陣列不同,終端側的大規模天線(xiàn)陣列受終端尺寸、終端功耗的制約,其實(shí)現難度將大大增加,目前只能在固定終端上實(shí)現大規模天線(xiàn)陣列的布置。移動(dòng)終端的大規模天線(xiàn)陣列設計面臨諸多挑戰,包括天線(xiàn)陣列校準,天線(xiàn)單元間的相互耦合以及功耗控制等。
 
3.2 毫米波射頻前端器件
 
射頻前端器件包括了功率放大器、開(kāi)關(guān)、濾波器、雙工器、低噪聲放大器等,其中功率放大器是最為核心的器件,其性能直接決定了終端的通信距離、信號質(zhì)量及待機時(shí)間。目前制造支持低頻段的射頻前端器件的材料多為砷化鎵、CMOS和硅鍺。但由于毫米波段與低頻段差異較大,低頻射頻前端器件的制造材料在物理特性上將很難滿(mǎn)足毫米波射頻前端器件的要求。
 
以功率放大器為例,目前主流的功率放大器制造材料為砷化鎵,但在毫米波頻段,氮化鎵及InP的制造工藝在性能指標上均要強于砷化鎵。下表所示為從低頻到毫米波段主要的射頻前端器件制造工藝上的發(fā)展方向。
 
 
另外,毫米波頻段大帶寬的特點(diǎn)對射頻前端器件的提出了更高的要求,未來(lái)毫米波終端的射頻前端器件將可能需支持1GHz以上的連續帶寬。
 
雖然氮化鎵被認為是未來(lái)毫米波終端射頻的主流制造工藝,但由于成本、產(chǎn)能等因素,基于氮化鎵工藝的高性能射頻前端器件多用于軍工和基站等特殊場(chǎng)景。毫米波射頻前端技術(shù)的發(fā)展將會(huì )成為毫米波終端實(shí)現的關(guān)鍵,預計到2020年之后,毫米波移動(dòng)終端射頻器件的技術(shù)和成本才可能達到大規模商用的要求。
 
4、毫米波終端測試方案分析
 
目前LTE終端的實(shí)驗室測試主要使用傳導連接,使用射頻饋線(xiàn)將被測設備和測試儀表連接,這種測試方案對場(chǎng)地要求不高,受外界干擾較小。但隨著(zhù)毫米波終端側的大規模天線(xiàn)陣列的使用,終端的無(wú)線(xiàn)收發(fā)器都將集成到天線(xiàn)形成天線(xiàn)模塊,未來(lái)毫米波終端可能不會(huì )存在射頻測試端口,而且高頻率下進(jìn)行耦合帶來(lái)的高插損等因素使傳統的傳導連接測試的方案更不可行,因此OTA(Over The Air)測試將成為毫米波終端測試的主流方案。
 
OTA測試可直接測試設備的整體輻射性能,能夠對設備的整機性能進(jìn)行測試,能夠更真實(shí)地反映設備的實(shí)際性能,但測試需要在微波暗室進(jìn)行,對于測試的場(chǎng)地要求較為嚴格,測試費用昂貴。
 
圖2:OTA測試的暗室
 
目前LTE OTA和MIMO OTA的研究已經(jīng)較為深入,但毫米波的OTA研究還處于起步階段,有關(guān)毫米波OTA測試的標準立項已經(jīng)在CCSA開(kāi)始討論。下圖3是LTE OTA測試系統的示意圖,未來(lái)毫米波終端OTA測試的方案預計會(huì )參考LTE OTA測試的系統,但由于毫米波工作頻率和主動(dòng)天線(xiàn)陣技術(shù)等應用,未來(lái)毫米波OTA測試在技術(shù)上將進(jìn)行一些改進(jìn)。
 
OTA測試作為毫米波終端測試的必選方案,將面臨以下挑戰:
 
1)毫米波新型吸波材料。由于傳統的軟質(zhì)海綿吸波材料在物理性能可電性能上存在缺陷,無(wú)法完全滿(mǎn)足5G毫米波測量的要求。因此研究并開(kāi)發(fā)更適合于毫米波暗室的吸波材料將會(huì )是毫米波OTA測試的關(guān)鍵。
 
2)OTA測試遠場(chǎng)測量條件。OTA測試根據測試場(chǎng)類(lèi)型可以分為近場(chǎng)和遠場(chǎng)測試。通常對于天線(xiàn)輻射性能的測試,測試接收天線(xiàn)一般置于遠場(chǎng),此時(shí)電磁輻射屬于平面波,場(chǎng)的相對角分布與離開(kāi)天線(xiàn)的距離無(wú)關(guān),大小與離開(kāi)天線(xiàn)的距離成反比,天線(xiàn)方向圖主瓣、副瓣和零值點(diǎn)已全部形成。而在近場(chǎng)接收天線(xiàn)可能會(huì )和發(fā)射天線(xiàn)會(huì )由于電容和電感的耦合作用互相干擾,造成錯誤的結果。遠場(chǎng)的判定條件是被測件與測量天線(xiàn)間的距離要大于2D2/λ,其中D為測量天線(xiàn)的直徑,λ為波長(cháng),由于毫米波段波長(cháng)很短,因此天線(xiàn)遠場(chǎng)的距離較大,以30GHz頻段,測量天線(xiàn)直徑為0.2m為例,遠場(chǎng)的距離將達到80m,暗室難以達到如此大的尺寸,并且測試距離的增加還會(huì )增加被測終端到測量天線(xiàn)間的路徑損耗,會(huì )進(jìn)一步降低測試系統的靈敏性和準確性。為解決毫米波遠場(chǎng)條件的問(wèn)題,我們可以通過(guò)緊縮場(chǎng)法縮短測量距離,或者采用中區場(chǎng)測量的方式來(lái)代替遠場(chǎng)測量。
 
緊縮場(chǎng)法:其通常采用一個(gè)拋物面金屬反射板,將測量天線(xiàn)發(fā)送的球面波經(jīng)反射面反射形成平面波,在一定遠距離處形成一個(gè)良好的靜區。將天線(xiàn)安置在靜區內,測量天線(xiàn)的遠場(chǎng)特性,其類(lèi)似于遠場(chǎng)測量,只是縮短測量距離,便于在理想遠場(chǎng)環(huán)境(暗室)下進(jìn)行測量。緊縮場(chǎng)天線(xiàn)測量系統能在較小的微波暗室里模擬遠場(chǎng)的平面波電磁環(huán)境,利用常規的遠場(chǎng)測試設備和方法對天線(xiàn)的輻射性能進(jìn)行測試。
 
中區場(chǎng)法:中區場(chǎng)(菲涅爾區)的距離計算方式為0.63
 
 
,同樣以30GHz頻段,測量天線(xiàn)直徑為0.2m為例,中區場(chǎng)的距離只有1.26m,普通的暗室尺寸也能滿(mǎn)足需求,因此可以在系統層面上,研究新的中區場(chǎng)測量理論與場(chǎng)源重構方法,用中區場(chǎng)來(lái)代替遠場(chǎng)進(jìn)行OTA測試。
 
圖3:LTE和毫米波測試系統示意圖
 
5、國內毫米波終端商用計劃分析
 
國內有關(guān)5G相關(guān)的研究和測試正如火如荼地進(jìn)行,但是相比于歐美,我國在6GHz以下的低頻段尚有較多可用的頻譜資源,包括3.3-3.6 GHz,4.8-5 GHz以及部分重耕的頻譜,因此我國對于毫米波的需求并不是很迫切。從產(chǎn)業(yè)鏈各方的路標來(lái)看,國內5G的首發(fā)頻段應該為6GHz以下的低頻段。
 
目前毫米波相關(guān)的研究尚處于起步階段,5G毫米波頻譜劃分還需進(jìn)一步確定。預計到2020年,才會(huì )有正式的5G毫米波終端出現。在5G商用的初期,主要會(huì )以6GHz以下低頻基站為主,國內5G毫米波終端的大規模商用預計還需要較長(cháng)的一段時(shí)間才能實(shí)現。
 
6、結束語(yǔ)
 
本文介紹了全球毫米波的劃分情況,總結了毫米波終端在技術(shù)實(shí)現上將會(huì )遇到的挑戰及困難,毫米波終端將布置更多的天線(xiàn)形成天線(xiàn)模塊,同時(shí)在射頻前端制造工藝上,高頻特性更好的材料將被開(kāi)發(fā)和應用。最后對毫米波終端OTA測試的情況及毫米波終端商用情況進(jìn)行了分析。毫米波技術(shù)作為5G關(guān)鍵技術(shù)之一,必將在即將到來(lái)的5G時(shí)代得以重用,毫米波終端相關(guān)的研究和測試工作也將不斷提速,為毫米波的商用奠定基礎。
 
參考文獻
 
[1] ITU-R report M.[IMT.ABOVE 6GHZ], “Technical feasibility of IMT in bands above 6GHz,” Jun 2015.
[2] ITU-R M.2376-0,”Technical feasibility of IMT in bands above 6 GHZ”; Jul 2015
[3] 工信部,“公開(kāi)征求對第五代國際移動(dòng)通信系統(IMT-2020)使用3300-3600MHz和4800-5000MHz頻段的意見(jiàn)” ,2017
[4] 黃海峰,歐盟5G頻譜初定:競爭驅動(dòng),影響全球.通信世界,2016
[5] 魏軍,5G通信技術(shù)推動(dòng)物聯(lián)網(wǎng)產(chǎn)業(yè)鏈發(fā)展.集成電路應用,2017
[6] IMT-2020(5G)推進(jìn)組,5G無(wú)線(xiàn)技術(shù)試驗進(jìn)展及后續計劃,2016
[7] CCSA YDT 1484.1-2016,無(wú)線(xiàn)終端空間射頻輻射功率,和接收機性能測量方法第1部分:通用要求,2016
[8] CCSA YDT 2864.1-2015,終端MIMO天線(xiàn)性能要求和測量方法第1部分:LTE無(wú)線(xiàn)終端,2015
[9] 3GPP TR 38.900, Channel model for frequency spectrum above 6 GHz (Release 14), 2016
[10] CCSA TC9-WG1-#40, 5G毫米波OTA測量暗室
要采購射頻么,點(diǎn)這里了解一下價(jià)格!
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書(shū)下載更多>>
熱門(mén)搜索
?

關(guān)閉

?

關(guān)閉

久久无码人妻精品一区二区三区_精品少妇人妻av无码中文字幕_98精品国产高清在线看入口_92精品国产自产在线观看481页